

SC011 Design of Efficient Illumination Systems

William Cassarly Synopsys, Inc.

SAMPLE PAGES ONLY. DOES NOT INCLUDE COMPLETE COURSE NOTES USED IN CLASS.

Outline

241

3337.5 292.5 27

67.5 $\theta_{in} = 2.5^\circ$ $D_{in} = 16 \text{mm}$

Photometry Fundamentals

- **Classical Projection** ٠ Uniformity
- **Mixing Rods** ٠
- **Lens Arrays** ٠
- **Faceted Reflectors** ٠
- **Integrating Cavities** ٠

•

Bill Cassarly Synopsys Illumination Course

Angle-Area Tradeoff

• The etendue for a planar aperture in a symmetric system is

Etendue_{2D} = n D $2\sin\theta_{max}$ Etendue_{3D} = $n^2 \pi (D/2)^2 \pi \sin^2\theta_{max}$

• For an etendue preserving system,

- In a lossless system,
 - Decreasing the angular distribution <u>requires</u> spatial increase
 - Increasing the angular distribution <u>requires</u> spatial decrease

Kohler Superposition: Flip-n-Fold for Rectangular Lightpipe

Tapered Mixer Simulation: RGB Smooth vs Rippled

